Two transonic computational schemes which are based on the Integral Equation Formulation of the full potential equation were presented. The first scheme is a Shock Capturing-Shock Fitting (SCSF) scheme which uses the full potential equation throughout with the exception of the shock wave where the Rankine-Hugoniot relations are used to cross and fit the shock. The second scheme is an Integral Equation with Embedded Euler (IEEE) scheme which uses the full potential equation with an embedded...

Topics: NASA Technical Reports Server (NTRS), AIRFOILS, COMPUTATIONAL FLUID DYNAMICS, EULER EQUATIONS OF...

Pneumatic active control of asymmetric vortical flows around a slender pointed forebody is investigated using the three dimensional solution for the compressible thin-layer Navier-Stokes equation. The computational applications cover the normal and tangential injection control of asymmetric flows around a 5 degree semi-apex angle cone at a 40 degree angle of attack, 1.4 freestream Mach number and 6 x 10(exp 6) freestream Reynolds number (based on the cone length). The effective tangential angle...

Topics: NASA Technical Reports Server (NTRS), ANGLE OF ATTACK, FINITE VOLUME METHOD, FLUX DIFFERENCE...

The well developed surface panel method is extended by adding a volume integral term allowing calculation of the full effect of compressibility. The full effect of compressibility is calculated by using mixed type finite difference scheme consistent with the mixed nature of transonic flow. The solution is obtained through successive iteration cycles for subcritical flows and for critical flows the solution is obtained through satisfying the Rankine-Hugoniot relations across the captured shock...

Topics: NASA Technical Reports Server (NTRS), AIRFOILS, COMPRESSIBILITY, COMPUTATIONAL FLUID DYNAMICS,...

The problems of asymmetric flow around slender bodies and its control are formulated using the unsteady, compressible, thin-layer or full Navier-Stokes equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. The problem is numerically simulated for both locally-conical and three-dimensional flows. The numerical applications include studies of the effects of relative incidence, Mach number and Reynolds number on the flow asymmetry. For the control of flow...

Topics: NASA Technical Reports Server (NTRS), ASYMMETRY, COMPUTATIONAL FLUID DYNAMICS, NAVIER-STOKES...

Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane...

Topics: NASA Technical Reports Server (NTRS), AEROELASTICITY, MEMBRANE STRUCTURES, FLEXIBILITY, BALLUTES,...

The steady full-potential equation is written in the form of Poisson's equation, and the solution for the velocity field is expressed in terms of an integral equation. The integral solution consists of two surface integrals and one volume integral. The solution is obtained through successive iteration cycles. Each cycle of iteration consists of two sub-cycles, an inner cycle for wake relaxation and an out cycle for the strength of the source distribution integrals representing the flow...

Topics: NASA Technical Reports Server (NTRS), COMPRESSIBLE FLOW, COMPUTATIONAL FLUID DYNAMICS, DELTA WINGS,...

An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in...

Topics: NASA Technical Reports Server (NTRS), AXISYMMETRIC FLOW, COMPUTATIONAL FLUID DYNAMICS, DUCTED FLOW,...

The unsteady compressible, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the delta wing rock phenomenon. The NS equations are solved time accurately, using the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The rigid-body dynamics equations are solved using a four-stage Runge-Kutta scheme. Once the wing reaches the limit-cycle response, an active control model using a mass injection system is applied...

Topics: NASA Technical Reports Server (NTRS), NAVIER-STOKES EQUATION, DELTA WINGS, RIGID STRUCTURES,...

Papers resulting from work performed from January 1, 1987 to July 31, 1987 are listed. Transonic computational schemes based on Integral Equation Formulation of the full potential equation were presented. Classical and zero-total pressure-loss sets of Euler equations applied to delta wings were examined.

Topics: NASA Technical Reports Server (NTRS), AIRFOILS, BOUNDARY VALUE PROBLEMS, COMPUTATIONAL FLUID...

Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.

Topics: NASA Technical Reports Server (NTRS), AXISYMMETRIC FLOW, COMPUTATIONAL FLUID DYNAMICS, SUPERSONIC...

The buffet response of the flexible twin-tail configuration of the F/A-18 and a generic F-111 aircraft are computationally simulated and experimentally validated. The problem is a multidisciplinary one which requires the sequential solution of three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations. The second set is the aeroelastic equations for bending and torsional twin-tail responses. The third set is the...

Topics: NASA Technical Reports Server (NTRS), AEROELASTICITY, ANGLE OF ATTACK, VORTEX BREAKDOWN,...

Accomplishments achieved during the reporting period are listed. These accomplishments included 6 papers published in various journals or presented at various conferences; 1 abstract submitted to a technical conference; production of 2 animated movies; and a proposal for use of the National Aerodynamic Simulation Facility at NASA Ames Research Center for further research. The published and presented papers and animated movies addressed the following topics: aeroelasticity, computational fluid...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, DELTA WINGS, AEROELASTICITY,...

The development of a subharmonic secondary instability in a boundary layer with pressure gradients controlled by suction was investigated. The effect of suction control on this early stage leading to transition is evaluated. The secondary three-dimensional instability problem for compressible boundary layers was formulated to investigate theoretically the effect of finite amplitude two-dimensional wave on the growth of three-dimensional perturbations in compressible boundary layers. Only a...

Topics: NASA Technical Reports Server (NTRS), BOUNDARY LAYER CONTROL, BOUNDARY LAYER TRANSITION, FLOW...

The unsteady, compressible, thin-layer Navier-Stokes equations are used to numerically study the passive control of steady and unsteady supersonic asymmetric flows around circular and noncircular cones. The main computational scheme of the present study is an implicit upwind, flux-difference splitting, finite-volume scheme. Passive control of flow asymmetry is studied by using a vertical fin in the leeward plane of geometric symmetry and side strakes with and without thickness at different...

Topics: NASA Technical Reports Server (NTRS), ASYMMETRY, CIRCULAR CONES, COMPUTATIONAL FLUID DYNAMICS,...

The accomplishments achieved during the period include conference and proceedings publications, journal papers, and abstracts which are either published, accepted for publication or under review. Conference presentations and NASA highlight publications are also included. Two of the conference proceedings publications are attached along with a Ph.D. dissertation abstract and table of contents. In the first publication, computational simulation of three-dimensional flows around a delta wing...

Topics: NASA Technical Reports Server (NTRS), AEROELASTICITY, BUFFETING, COMPUTATIONAL FLUID DYNAMICS,...

Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The...

Topics: NASA Technical Reports Server (NTRS), AIRFOIL PROFILES, EULER EQUATIONS OF MOTION, FLOW...

Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in...

Topics: NASA Technical Reports Server (NTRS), BODY-WING AND TAIL CONFIGURATIONS, BUFFETING, COMPUTATIONAL...

The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate...

Topics: NASA Technical Reports Server (NTRS), BOUNDARY LAYER STABILITY, FREQUENCY STABILITY, BOUNDARY LAYER...

Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting...

Topics: NASA Technical Reports Server (NTRS), FINITE ELEMENT METHOD, NONLINEARITY, THREE DIMENSIONAL...

The objective of this study is to examine the effect of flight, at off-design conditions, on the propagated sonic boom pressure signatures of a small "low-boom" supersonic aircraft. The amplification, or focusing, of the low magnitude "shaped" signatures produced by maneuvers such as the accelerations from transonic to supersonic speeds, climbs, turns, pull-up and pushovers is the concern. To analyze these effects, new and/or improved theoretical tools have been developed,...

Topics: NASA Technical Reports Server (NTRS), SONIC BOOMS, WAVEFORMS, SUPERSONIC AIRCRAFT, SUPERSONIC...

The conservative unsteady Euler equations for the flow relative motion in the moving frame of reference are used to solve for the steady and unsteady flows around sharp-edged delta wings. The resulting equations are solved by using an implicit approximately-factored finite volume scheme. Implicit second-order and explicit second- and fourth-order dissipations are added to the scheme. The boundary conditions are explicitly satisfied. The grid is generated by locally using a modified Joukowski...

Topics: NASA Technical Reports Server (NTRS), DISSIPATION, EULER EQUATIONS OF MOTION, INVISCID FLOW, STEADY...

The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at...

Topics: NASA Technical Reports Server (NTRS), ASYMMETRY, COMPUTATIONAL FLUID DYNAMICS, NAVIER-STOKES...

The buffet response of the flexible twin-tail/delta wing configuration, a multidisciplinary problem, is solved using three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations which are used for obtaining the flow-field vector and the aerodynamic loads on the twin tails. The second set is the coupled aeroelastic equations which are used for obtaining the bending and torsional deflections of the twin tails. The third set is...

Topics: NASA Technical Reports Server (NTRS), BUFFETING, MULTIBLOCK GRIDS, NAVIER-STOKES EQUATION,...

The buffet response of the twin-tail configuration of the F/A-18 aircraft; a multidisciplinary problem, is investigated using three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations. The second set is the coupled aeroelastic equations for bending and torsional twin-tail responses. The third set is the grid-displacement equations which are used to update the grid coordinates due to the tail deflections. The computational...

Topics: NASA Technical Reports Server (NTRS), AERODYNAMIC CONFIGURATIONS, DELTA WINGS, BUFFETING, UNSTEADY...

Classical and zero-total pressure-loss sets of Euler equations were applied to sharp- and round-edge delta wings. The origin of the total pressure was explained in the classical set. For sharp-edged delta wings, all sets of Euler equations produce the same separated flow solutions. For round-edged delta wings and for coarse grids, the solution depends on the level of dissipation, the accuracy of the surface boundary condition, and the type of Euler equations set. For round-edged delta wings and...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, DELTA WINGS, EULER EQUATIONS OF...

The unsteady, three-dimensional, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the natural rolling response of slender delta wings of zero thickness at moderate to high angles of attack, to transonic and subsonic flows. The governing equations of fluid flow and dynamics of the present multi-disciplinary problem are solved using the time-accurate solution of the NS equations with the implicit, upwind, Roe flux-difference...

Topics: NASA Technical Reports Server (NTRS), NAVIER-STOKES EQUATION, SWEPT WINGS, DELTA WINGS, RIGID...

Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and...

Topics: NASA Technical Reports Server (NTRS), COMPUTATIONAL FLUID DYNAMICS, S WAVES, SHOCK WAVES,...

The work presented in this paper include: 'Coupled and Uncoupled Bending-Torsion Responses of Twin-Tail Buffet'; 'Fluid/Structure Twin Tail Buffet Response Over a Wide Range of Angles of Attack'; 'Resent Advances in Multidisciplinary Aeronautical Problems of Fluids/Structures/Dynamics Interaction'; and'Development of a Coupled Fluid/Structure Aeroelastic Solver with Applications to Vortex Breakdown induced Twin Tail Buffeting.

Topics: NASA Technical Reports Server (NTRS), AEROELASTICITY, ANGLE OF ATTACK, VORTEX BREAKDOWN, AEROSPACE...

The accomplishments which have been achieved in the present year covering the period from Dec. 1, 1991 until Nov. 30, 1992 are given. These accomplishments include publications, national and international presentations, NASA Research Highlights and presentations, and the research group supported under this grant.

Topics: NASA Technical Reports Server (NTRS), SUPERSONIC FLOW, VORTEX BREAKDOWN, VORTICES, ASYMMETRY, FLOW...

Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the...

Topics: NASA Technical Reports Server (NTRS), TURBULENT FLOW, VORTICES, NAVIER-STOKES EQUATION, SUPERSONIC...

Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary...

Topics: NASA Technical Reports Server (NTRS), COMPRESSIBLE FLOW, FLUID DYNAMICS, MACH NUMBER, STEADY FLOW,...

The unsteady, compressible, thin-layer Navier-Stokes equations are used to obtain three-dimensional, asymmetric, vortex-flow solutions around cones and cone-cylinder configurations. The equations are solved using an implicit, upwind, flux-difference splitting, finite-volume scheme. The computational applications cover asymmetric flows around a 5 semi-apex angle cone of unit length at various Reynolds number. Next, a cylindrical afterbody of various length is added to the conical forebody to...

Topics: NASA Technical Reports Server (NTRS), COMPRESSIBLE FLOW, COMPUTATIONAL FLUID DYNAMICS,...

The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux difference splitting finite volume scheme. The developed three dimensional solver was verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to...

Topics: NASA Technical Reports Server (NTRS), COMPRESSIBLE FLOW, COMPUTATIONAL FLUID DYNAMICS, STEADY FLOW,...