Provide an overview of algorithms used in SARDA (Spot and Runway Departure Advisor) HITL (Human-in-the-Loop) simulation for Dallas Fort-Worth International Airport and Charlotte Douglas International airport. Outline a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the single runway scheduling (SRS) problem, and discuss heuristics to restrict the search space for the DP based algorithm and provide improvements.
Topics: Malik, Waqar, Universities Space Research Association
A mixed integer linear program is presented for deterministically scheduling departure and ar rival aircraft at airport runways. This method addresses different schemes of managing the departure queuing area by treating it as first-in-first-out queues or as a simple par king area where any available aircraft can take-off ir respective of its relative sequence with others. In addition, this method explicitly considers separation criteria between successive aircraft and also incorporates an...
Topics: NASA Technical Reports Server (NTRS), AIRPORTS, CROSSINGS, RUNWAYS, TAKEOFF, SCHEDULING, INTEGERS,...
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation....
Topics: NASA Technical Reports Server (NTRS), AIR TRAFFIC, AIRPORTS, TAXIING, TAKEOFF, ROUTES, RUNWAYS,...
Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASA's Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold...
Topics: NASA Technical Reports Server (NTRS), TAXIING, AIRPORTS, SCHEDULING, SIMULATION, AIR TRAFFIC...
This paper presents a new concept of optimized surface operations at busy airports to improve the efficiency of taxi operations, as well as reduce environmental impacts. The suggested system architecture consists of the integration of two decoupled optimization algorithms. The Spot Release Planner provides sequence and timing advisories to tower controllers for releasing departure aircraft into the movement area to reduce taxi delay while achieving maximum throughput. The Runway Scheduler...
Topics: NASA Technical Reports Server (NTRS), AIR TRAFFIC CONTROL, ALGORITHMS, SCHEDULING, AIRFIELD SURFACE...
This paper proposes a new departure pushback decision-support tool (DST) for airport ramp-tower controllers. It is based on NASA's Spot and Runway Departure Advisor (SARDA) collaborative decision-making concept, except with the modification that the gate releases now are controlled by tactical pushback (or gate-hold) advisories instead of strategic pre-assignments of target pushback times to individual departure flights. The proposed ramp DST relies on data exchange with the airport traffic...
Topics: NASA Technical Reports Server (NTRS), AIR TRAFFIC CONTROL, RUNWAYS, AIRPORT TOWERS, AIRLINE...
Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system...
Topics: NASA Technical Reports Server (NTRS), RUNWAYS, SCHEDULING, AIRFIELD SURFACE MOVEMENTS, TAKEOFF,...
Spot and Runway Departure Advisor (SARDA) is a proposed decision-support tool for air traffic control tower controllers for reducing taxi delay and optimizing the departure sequence. In the present study, the tool's usability was evaluated to ensure that its claimed performance benefits are not being realized at the cost of increasing the work burden on controllers. For the evaluation, workload ratings and questionnaire responses collected during a human-in-the-loop simulation experiment were...
Topics: NASA Technical Reports Server (NTRS), AIR TRAFFIC CONTROLLERS (PERSONNEL), AIR TRAFFIC CONTROL,...
Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASAs Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold...
Topics: NASA Technical Reports Server (NTRS), AIRPORTS, RUNWAYS, AIRFIELD SURFACE MOVEMENTS, TAXIING, AIR...